Contemporary Principles of Magnetotherapy Application in Physical Medicine and Rehabilitation

Volume 7, Issue 2 (2017)

Contemporary Principles of Magnetotherapy Application in Physical Medicine and Rehabilitation
Tamara Popović
Abstract: 
Magnetotherapy is one of the oldest methods of treatment and throughout the history of medicine it passed the path from alternative to official method. In the 21st century a large number of scientific researches broadened the indication areas based on magnetotherapy. The objective of the paper is to demonstrate: historical development, types of magnetotherapy, its biological effects, clinical application and mechanisms of effects. Available world reference from the fields of basic and clinical researches on magnetotherapy was used. Basic studies indicate that leucocytes, thrombocytes, osteoblasts, chondrocytes, fibrinogen, fibrin, cytokine, the factors of growth, collagen, elastin and free radicals show the alteration in its effects when exposed to magnetic field. Magnetic fields impact the proliferation of cells, epithelization, phagocytosis, vasodilation which certainly improves the physiological surrounding that contributes to the regeneration and healing. Therapeutic effects depend upon all characteristics of electromagnetic field and patient’s condition. The widest application of PEMP has in stimulation of osteogenesis (badly coalesced fractures, pseudarthrosis, spinal fusions coalescence), osteoarthritis, osteoporosis and other painful conditions. Transcranial magnetic stimulation has an increasing application in neuro-rehabilitation. Precise mechanisms of electromagnetic therapy effects are not known yet which is certainly one of the reasons of various approach and sufficient and on evidence based clinical application of this physical modality. A precise dosimetry, well-defined laboratory conditions, designed clinical studies, defined treatment protocols contribute to clearer clinical application as well as actuality of magnetotherapy in the future.
Keywords: 
magnetotherapy, clinical application, PEMF (pulsed electromagnetic field), TMS (transcranial magnetic stimulation)
Full Text: 
PDF
References: 
  1. Basford J.R. (2001). A historical perspective of the popular use of electric and magnetic therapy. Arch Physic Med Rehab, 82, 1261-9
  2. Batavia, M. (2006). Contraindications in Physical Rehabilitation-E-Book: Doing No Harm. Elsevier Health Sciences.
  3. Gilbert W. De Magnete. (1991). (written in Latin, Translated and published by Dover     Publication.p.368
  4. Lažetić B. (2004). Osnovi magnetobiologije. Novi Sad: Medicinski fakultet
  5. Fukada E., & Yasuda I. (1957). On the piezoelectric effects of bone. Journal of Phys Soc of Japan, 12, 1158-62.
  6. Friedenberg ZB. (1966). Brighton CT. Bioelectric potentials in bone. J Bone Joint Surg . 48(5): 915-23
  7. Bassett, C. A. L., Pawluk, R. J., & Pilla, A. A. (1974). Acceleration of fracture repair by electromagnetic fields. A surgically noninvasive method. Annals of the New York Academy of Sciences, 238(1), 242-262.
  8. Linovitz, R. J., Pathria, M., Bernhardt, M., Green, D., Law, M. D., McGuire, R. A., ... & Faden, J. S. (2002). Combined magnetic fields accelerate and increase spine fusion: a double-blind, randomized, placebo controlled study. Spine, 27(13), 1383-1388.
  9. Leśniewicz, J., Pieszyński, I., Zboralski, K., & Florkowski, A. (2014). The effect of selected physical procedures on mobility in women with rheumatoid arthritis. Polski merkuriusz lekarski: organ Polskiego Towarzystwa Lekarskiego, 37(222), 335-337.
  10. Kocić, M., Lazović, M., Kojović, Z., Mitković, M., Milenković, S., & Ćirić, T. (2006). Methods of the physical medicine therapy in prevention of heterotopic ossification after total hip arthroplasty. Vojnosanitetski pregled, 63(9), 807-811.
  11. Vadalà, M., Vallelunga, A., Palmieri, L., Palmieri, B., Morales-Medina, J. C., & Iannitti, T. (2015). Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson’s disease. Behavioral and Brain Functions, 11(1), 26.
  12. Hsu, W. Y., Cheng, C. H., Liao, K. K., Lee, I. H., & Lin, Y. Y. (2012). Effects of repetitive transcranial magnetic stimulation on motor functions in patients with stroke. Stroke, 43(7), 1849-1857.
  13. Yadav, V., Bever, C., Bowen, J., Bowling, A., Weinstock-Guttman, B., Cameron, M., ... & Narayanaswami, P. (2014). Summary of evidence-based guideline: Complementary and alternative medicine in multiple sclerosis Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology, 82(12), 1083-1092.
  14. Markov, M. (2015). XXIst century magnetotherapy. Electromagnetic biology and medicine, 34(3), 190-196
  15. Adey, W. R. (2004). Potential therapeutic applications of nonthermal electromagnetic fields: ensemble organization of cells in tissue as a factor in biological field sensing. Bioelectromagnetic medicine, 1.
  16. Kirilov J.B., Uhov J.I., Lastučkin A.V., Sučkova Ž.V., & Karpov E.M. (1995). Mehanizam dejstvija    magnitnoga poja na živoj organizam. Vopros Kurort, 3:43-45.
  17. Barnothy, M. F., & Sümegi, I. (1969). Effects of the magnetic field on internal organs and the endocrine system of mice. In Biological effects of magnetic fields (pp. 103-126). Springer, Boston, MA.
  18. Markov, M. S., Todorov, S. I., & Ratcheva, M. R. (1975). Biomagnetic effect of the constant magnetic field action on water and physiological activity. In Physical and Chemical Bases of Biological Information Transfer (pp. 441-449). Springer, Boston, MA.
  19. Liburdy, R. P. (1995). Cellular studies and interaction mechanisms of extremely low frequency fields. Radio Science, 30(1), 179-203.
  20. Pilla, A. A. (2015). Pulsed electromagnetic fields: from signaling to healing. Electromagnetic Fields in Biology and Medicine, 29-48.
  21. Cho, M. R., Thatte, H. S., Silvia, M. T., & Golan, D. E. (1999). Transmembrane calcium influx induced by ac electric fields. The FASEB journal, 13(6), 677-683.
  22. Ikehara, T., Park, K. H., Yamaguchi, H., Hosokawa, K., Houchi, H., Azuma, M., ... & Yoshizaki, K. (2002). Effects of a time varying strong magnetic field on release of cytosolic free Ca2+ from intracellular stores in cultured bovine adrenal chromaffin cells. Bioelectromagnetics, 23(7), 505-515.
  23. Markov, M. S. (2004). Myosin light chain phosphorylation modification depending on magnetic fields. I. Theoretical. Electromagnetic Biology and Medicine, 23(1), 55-74.
  24. Berg, H. (1995). Possibilities and problems of low frequency weak electromagnetic fields in cell biology. Bioelectrochemistry and bioenergetics, 38(1), 153-159.
  25. Sreedharan, V., & Zhang, D. (2003, March). Finite element modeling of cellular responses of gap junction connected osteocytes under extremely low-frequency electromagnetic fields. In Bioengineering Conference, 2003 IEEE 29th Annual, Proceedings of (pp. 160-161). IEEE.
  26. Vander Molen, M. A., Donahue, H. J., Rubin, C. T., & McLeod, K. J. (2000). Osteoblastic networks with deficient coupling: differential effects of magnetic and electric field exposure. Bone, 27(2), 227-231.
  27. Zečević-Luković, T., Milošević, O., & Ristić, B. (2007). Electromagnetic field and osteogenesis. Vojnosanitetski pregled, 64(10), 701-706.
  28. Lukac, T., Matavulj, A., Matavulj, M., Rajković, V., & Lazetić, B. (2006). Photoperiodism as a modifier of effect of extremely low-frequency electromagnetic field on morphological properties of pineal gland. Bosnian journal of basic medical sciences, 6(3), 10-16.
  29. Glaser, R. (1992). Current concepts of the interaction of weak electromagnetic fields with cells. Journal of Electroanalytical Chemistry, 342(3), 255-268.
  30. Santoro, N., Lisi, A., Pozzi, D., Pasquali, E., Serafino, A., & Grimaldi, S. (1997). Effect of extremely low frequency (ELF) magnetic field exposure on morphological and biophysical properties of human lymphoid cell line (Raji). Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1357(3), 281-290.
  31. Selvam, R., Ganesan, K., Raju, K. N., Gangadharan, A. C., Manohar, B. M., & Puvanakrishnan, R. (2007). Low frequency and low intensity pulsed electromagnetic field exerts its antiinflammatory effect through restoration of plasma membrane calcium ATPase activity. Life sciences, 80(26), 2403-2410.
  32. Anbarasan, S., Baraneedharan, U., Paul, S. F., Kaur, H., Rangaswami, S., & Bhaskar, E. (2016). Low dose short duration pulsed electromagnetic field effects on cultured human chondrocytes: An experimental study. Indian journal of orthopaedics, 50(1), 87.
  33. Popović T. (2007). Poređenje djelovanja pulsnog elektromagnetnog djelovanja i medikamentozne terapije na kost u eksperimentalnoj osteoporozi. Neobjavljena doktorska disertacija.
  34. Yan, J. L., Zhou, J., Ma, H. P., Ma, X. N., Gao, Y. H., Shi, W. G., ... & Chen, K. M. (2015). Pulsed electromagnetic fields promote osteoblast mineralization and maturation needing the existence of primary cilia. Molecular and cellular endocrinology, 404, 132-140.
  35. Li, J. K. J., Lin, J. C. A., Liu, H. C., & Chang, W. H. S. (2007). Cytokine release from osteoblasts in response to different intensities of pulsed electromagnetic field stimulation. Electromagnetic Biology and medicine, 26(3), 153-165..
  36. Chang, K., Hong‐Shong Chang, W., Yu, Y. H., & Shih, C. (2004). Pulsed electromagnetic field stimulation of bone marrow cells derived from ovariectomized rats affects osteoclast formation and local factor production. Bioelectromagnetics, 25(2), 134-141.
  37. Bassett, C. A. L., Mitchell, S. N., Norton, L., Caulo, N., & Gaston, S. R. (1979). Electromagnetic repairs of nonunions, electrical properties of bone and cartilage, experimental effects and clinical applications. Grune & Stratton Inc, New York, 605.
  38. Ryang We, S., Koog, Y. H., Jeong, K. I., & Wi, H. (2012). Effects of pulsed electromagnetic field on knee osteoarthritis: a systematic review. Rheumatology, 52(5), 815-824.
  39. Tabrah, F. L., Ross, P., Hoffmeier, M., & Gilbert, F. (1998). Clinical report on long‐term bone density after short‐term EMF application. Bioelectromagnetics, 19(2), 75-78..
  40. Trock, D. H., Bollet, A. J., & Markoll, R. (1994). The effect of pulsed electromagnetic fields in the treatment of osteoarthritis of the knee and cervical spine. Report of randomized, double blind, placebo controlled trials. The Journal of Rheumatology, 21(10), 1903-1911.
  41. Liao, X., Xing, G., Guo, Z., Jin, Y., Tang, Q., He, B., ... & Mu, Q. (2017). Repetitive transcranial magnetic stimulation as an alternative therapy for dysphagia after stroke: A systematic review and meta-analysis. Clinical rehabilitation, 31(3), 289-298.
  42. Shukla, A. W., Shuster, J. J., Chung, J. W., Vaillancourt, D. E., Patten, C., Ostrem, J., & Okun, M. S. (2016). Repetitive transcranial magnetic stimulation (rTMS) therapy in Parkinson disease: a meta-analysis. PM&R, 8(4), 356-366..
  43. George, M. S., Taylor, J. J., & Short, E. B. (2013). The expanding evidence base for rTMS treatment of depression. Current opinion in psychiatry, 26(1), 13.
  44. Schnurrer-Luke-Vrbanić, T., & Ćurković, B. (2012). The new technologies in physical and rehabilitation medicine. Medicina Fluminensis, 48(4), 346-353.